Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Year range
1.
Open Forum Infectious Diseases ; 8(SUPPL 1):S281-S282, 2021.
Article in English | EMBASE | ID: covidwho-1746639

ABSTRACT

Background. The quantitative level of pathogens present in a host is a major driver of infectious disease (ID) state and outcome. However, the majority of ID diagnostics are qualitative. Next-generation sequencing (NGS) is an emerging ID diagnostics and research tool to provide insights, including tracking transmission, evolution, and identifying novel strains. Methods. We built a novel likelihood-based computational method to leverage pathogen-specific genome-wide NGS data to detect SARS-CoV-2, profile genetic variants, and furthermore quantify levels of these pathogens. We used de-identified clinical specimens tested for SARS-CoV-2 using RT-PCR, SARS-CoV-2 NGS Assay (hybrid capture, Twist Bioscience), or ARTIC (amplicon-based) platform, and COVID-DX software. A training (n=87) and validation (n=22) set was selected to establish the strength of our quantification model. We fit non-uniform probabilistic error profiles to a deterministic sigmoidal equation that more realistically represents observed data and used likelihood maximized over several different read depths to improve accuracy over a wide range of values of viral load. Given the proportion of the genome covered at varying depths for a single sample as input data, our model estimated the Ct of that sample as the value that produces the maximum likelihood of generating the observed genome coverage data. Results. The model fit on 87 SARS-CoV-2 NGS Assay training samples produced a good fit to the 22 validation samples, with a coefficient of correlation (r2) of ~0.8. The accuracy of the model was high (mean absolute % error of ~10%, meaning our model is able to predict the Ct value of each sample within a margin of ±10% on average). Because of the nature of the commonly used ARTIC protocol, we found that all quantitative signals in this data were lost during PCR amplification and the model is not applicable for quantification of samples captured this way. The ability to model quantification is a major advantage of the SARS-CoV-2 NGS assay protocol. Left. Observed genome coverage (y-axis) plotted against Ct value (x-axis). The best-fitting logistic curve is demonstrated with a red line with shaded areas above and below representing the fitted error profile. RIGHT: Model-estimated Ct values (y-axis) compared to laboratory Ct values (x-axis) with grey bars representing estimated confidence intervals. The 1:1 diagonal is shown as a dotted line. Conclusion. To our knowledge, this is the first model to incorporate sequence data mapped across the genome of a pathogen to quantify the level of that pathogen in a clinical specimen. This has implications in ID diagnostics, research, and metagenomics.

2.
[Unspecified Source]; 2020.
Non-conventional in English | [Unspecified Source] | ID: grc-750500

ABSTRACT

SARS-CoV-1 and SARS-CoV-2 are not phylogenetically closely related;however, both use the ACE2 receptor in humans for cell entry. This is not a universal sarbecovirus trait;for example, many known sarbecoviruses related to SARS-CoV-1 have two deletions in the receptor binding domain of the spike protein that render them incapable of using human ACE2. Here, we report three novel sarbecoviruses from Rwanda and Uganda which are phylogenetically intermediate to SARS-CoV-1 and SARS-CoV-2 and demonstrate via in vitro studies that they are also unable to utilize human ACE2. Furthermore, we show that the observed pattern of ACE2 usage among sarbecoviruses is most likely due to recombination. We show that the lineage that includes SARS-CoV-2 is most likely the ancestral ACE2-using lineage, and that recombination with at least one virus from this group conferred ACE2 usage to the progenitor of SARS-CoV-1 at some time in the past. We argue that alternative scenarios such as convergent evolution are much less parsimonious;we show that biogeography and patterns of host tropism support the plausibility of a recombination scenario;and we propose a competitive release hypothesis to explain how this recombination event could have occurred and why it is evolutionarily advantageous. The findings provide important insights into the natural history of ACE2 usage for both SARS-CoV-1 and SARS-CoV-2, and a greater understanding of the evolutionary mechanisms that shape zoonotic potential of coronaviruses. This study also underscores the need for increased surveillance for sarbecoviruses in southwestern China, where most ACE2-using viruses have been found to date, as well as other regions including Africa, where these viruses have only recently been discovered.

3.
Virus Evol ; 7(1): veab007, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1324665

ABSTRACT

Severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) and SARS-CoV-2 are not phylogenetically closely related; however, both use the angiotensin-converting enzyme 2 (ACE2) receptor in humans for cell entry. This is not a universal sarbecovirus trait; for example, many known sarbecoviruses related to SARS-CoV-1 have two deletions in the receptor binding domain of the spike protein that render them incapable of using human ACE2. Here, we report three sequences of a novel sarbecovirus from Rwanda and Uganda that are phylogenetically intermediate to SARS-CoV-1 and SARS-CoV-2 and demonstrate via in vitro studies that they are also unable to utilize human ACE2. Furthermore, we show that the observed pattern of ACE2 usage among sarbecoviruses is best explained by recombination not of SARS-CoV-2, but of SARS-CoV-1 and its relatives. We show that the lineage that includes SARS-CoV-2 is most likely the ancestral ACE2-using lineage, and that recombination with at least one virus from this group conferred ACE2 usage to the lineage including SARS-CoV-1 at some time in the past. We argue that alternative scenarios such as convergent evolution are much less parsimonious; we show that biogeography and patterns of host tropism support the plausibility of a recombination scenario, and we propose a competitive release hypothesis to explain how this recombination event could have occurred and why it is evolutionarily advantageous. The findings provide important insights into the natural history of ACE2 usage for both SARS-CoV-1 and SARS-CoV-2 and a greater understanding of the evolutionary mechanisms that shape zoonotic potential of coronaviruses. This study also underscores the need for increased surveillance for sarbecoviruses in southwestern China, where most ACE2-using viruses have been found to date, as well as other regions such as Africa, where these viruses have only recently been discovered.

4.
Open Forum Infectious Diseases ; 7(SUPPL 1):S278, 2020.
Article in English | EMBASE | ID: covidwho-1185787

ABSTRACT

Background: COVID-19 had spread quickly, causing an international public health emergency with an alarming global shortage of COVID-19 diagnostic tests. We developed and clinically validated a next-generation sequencing (NGS)-based target enrichment assay with the COVID-DX Software tailored for the detection, characterization, and surveillance of the SARS-CoV-2 viral genome. Methods: The SARS-CoV-2 NGS assay consists of components including library preparation, target enrichment, sequencing, and a COVID-DX Software analysis tool. The NGS library preparation starts with extracted RNA from nasopharyngeal (NP) swabs followed by cDNA synthesis and conversion to Illumina TruSeq-compatible libraries using the Twist Library Preparation Kit via Enzymatic Fragmentation and Unique Dual Indices (UDI). The library is then enriched for SARS-CoV-2 sequences using a panel of dsDNA biotin-labeled probes, specifically designed to target the SARSCoV- 2 genome, then sequenced on an Illumina NextSeq 550 platform. The COVID-DX Software analyzes sequence results and provides a clinically oriented report, including the presence/absence of SARS-CoV-2 for diagnostic use. An additional research use only report describes the assay performance, estimated viral titer, coverage across the viral genome, genetic variants, and phylogenetic analysis. Results: The SARS-CoV-2 NGS Assay was validated on 30 positive and 30 negative clinical samples. To measure the sensitivity and specificity of the assay, the positive and negative percent agreement (PPA, NPA) was defined in comparison to an orthogonal EUA RT-PCR assay (PPA [95% CI]: 96.77% [90.56%-100%] and NPA [95% CI]: 100% [100%-100%]). Data reported using our assay defined the limit of detection to be 40 copies/ml using heat-inactivated SARS-CoV-2 viral genome in clinical matrices. In-silico analysis provided >99.9% coverage across the SARS-CoV-2 viral genome and no cross-reactivity with evolutionarily similar respiratory pathogens. Conclusion: The SARS-CoV-2 NGS Assay powered by the COVID-DX Software can be used to detect the SARS-CoV-2 virus and provide additional insight into viral titer and genetic variants to track transmission, stratify risk, predict outcome and therapeutic response, and control the spread of infectious disease.

SELECTION OF CITATIONS
SEARCH DETAIL